EXCITING NEWS

NEW ‘AUSTRALIAN RHODODENDRON SOCIETY’ WEBSITE IS NOW LIVE.
ALL ARS BRANCHES REPRESENTED.
SECTIONS ON PLANT CARE, PLANT ID, RESOURCES,
NEWSLETTERS, ARS JOURNALS,
GALLERY AND MUCH MORE.
CHECK IT OUT AT
www.rhododendron.com.au

2013 PROGRAMME

JUNE
SATURDAY 8TH 2.00PM @ NRG. Plant Distribution Day. Plants from the Society nursery and members’ collections will be available, both species and hybrids.

SEPTEMBER/OCTOBER
DATE TO BE ANNOUNCED IN A FUTURE NEWSLETTER; Combined garden tour with Ferny Creek Horticulture Society Rhododendron Group.

NOVEMBER
SATURDAY 2ND & SUNDAY 3RD RHODODENDRON SHOW in the new Vireya House.
FRIDAY 15TH (unless otherwise advised) 8.00pm @ Nunawading. Speakers: Prue and Francis Crome will describe their trip to Burma. ARSV AGM.
Dear members,

At last we are seeing the days shorten and the daily maximums fall, autumn is upon us. Mowing has become more of an exercise in collecting leaves than shortening the grass. But rain, where is it? Still, farmers have told me, it’s a good season if the autumn break comes before Anzac day, so no panic just yet.

We held our deferred AGM on the 9th of February, still poorly attended but got a quorum. As a consequence we can now belatedly welcome Alex Pottage and Dan Macleod on to the committee. Both these members have already made significant contributions to the Gardens at Olinda. Poor overworked Michael Hare has managed to convince Prue Crome to take over his treasurer’s responsibilities.

The Vireya Glasshouse refurbishment is essentially finished, you can read more detail on this and see photos in this newsletter. The task now becomes one of landscaping and planting the glasshouse so as to house and show off the vireya collection to its best advantage.

The Propagation House at Olinda has been used extensively over the last few months, with a lot of cuttings of deciduous azaleas, rare and/or interesting Rhodo species and cultivars put down. Given the heat experienced this summer it will not come as a surprise that this smallish glasshouse got uncomfortably hot on a lot of days. We provided extra shading, but still the temperature in this house got into the high 30s (or more) frequently. I worried that the heat would be too much and that a year worth of cuttings would be lost. To my relief far from being damaged the cuttings seemed to have thrived in this environment. Things that strike easily, such as azaleas, are rooted and potted on in about 10 weeks. The slower to strike Rhodos often seem to be well rooted within 4 months. Where we have tried grafts we have found they do very well simply by placing the grafted plant in its pot under the benches, where they get enough light but no direct sunlight. The evidence of this years successes is that despite the house being far hotter then is desirable the humidification system (see photo of how foggy it gets) allows the plants to get through reasonably unscathed. I will remind members this glasshouse is an ARSV facility and can be used by members to do some propagating of their own (within sensible limits).

Earlier this month the Minister for Environment and Climate Change, the Hon. Ryan Smith launched the Draft Strategic Management Plan for the Dandenong Ranges Gardens, including The National Rhododendron Gardens Olinda. This plan and document have taken many years to get to this stage and I doubt that many of you will be surprised or disappointed by the recommendations. In essence the vision is to position the Gardens as the cool-climate botanic gardens of Melbourne. It is hoped that this will improve the profile of the Gardens, increase visitor numbers, make it easier to attract horticultural expertise to further develop the Gardens and facilitate partnerships with other botanic gardens, industry and educational institutions. I see it as a way of guaranteeing the continued maintenance and improvement of, the legacy of the ARSV that is, the National Rhododendron Garden Olinda. It may mean that the Gardens have a name change (this is by no means certain) it will probably include the word “botanic”, but it might not include Rhododendron. I feel regardless of the name the
Garden will still need a lot of input from our society, making sure the Rhododendron collection is as good as it can be. The society will be vital in ensuring the Gardens preserve the irreplaceable cultivars and we will be the driving force behind improving Olinda’s role in the world’s effort at species conservation.

John O’Hara.

THE SPECIES COLUMN

mollicomum Subsection Scabrifolia.

The Scabrifolia group is distinguished by having flowers from axillary buds (along the stems). This group includes *hemitrichotum, mollicomum, pubescens, racemosum, scabrifolium,* and *spinuliferum.* All have small scaly leaves and bristles on the young growth. They are not particularly frost-hardy in England but are generally heat and drought-tolerant, which makes them ideal for our conditions.

The plants of *mollicomum* in the main rockery are quite attractive in mid-September, with masses of pale pink flowers. (See Photo page 9).

Name:
The name *mollicomum* means soft-haired.

Distribution:
Yunnan and South West Sichuan at 2400 to 3800 metres, on dry rocky hillsides, thickets, or forest margins.
Characteristics:
This species varies from a compact shrub to tall forms growing to 3.6 metres. The branchlets are densely pubescent. The leaves are fairly narrow up to 3.6 cm., lanceolate, pubescent on both sides, pale green below. The flowers are in groups of 1 to 3 from the leaf axils (along the stems) in various shades of pale to deep pink and sometimes pink and white combinations. It is easily distinguished from *racemosum* which has smooth oval leaves, glaucous below.

Cultivation:
All of the species in the Scabrifolia Subsection are well–suited to our climate. They are generally heat-tolerant, drought-resistant, and do well in parts of the garden with no additional watering. As a bonus they are also resistant to lace-bug and petal-blight. Clearly we could locate many more of these plants towards the Northern part of the garden where they would require little maintenance.

Where to See These Plants:
A quick review of all the Scabrifolia subsection seems appropriate:

mollicomum – Four plants in the main rockery, all doing well.
hemitrichotum – Two planted in the 1960’s, not found, possibly extinct.
pubescent --.Five planted, one located in the Scabrifolia bed towards the North end of the garden.
scabrifolium – Twenty planted, location uncertain but one behind the glass-house.
scabrifolium var. spiciferum – Eighteen planted, seven in the main rockery.
spinuliferum – Thirty planted, 12 located, mainly in the Scabrifolia bed.

Alan Kepert.

SOCIETY WEBSITE

Prue Crome has done a fantastic job organising the new Australian Rhododendron Society Website. It is now up and running.
The new site is also the Victorian Branch Website, although the old Victorian Branch site will remain active until everyone gets used to the new one.
Every branch, Emu Valley, Southern Tasmania and South Australia as well as Victoria has a page on the new site. Whether other Branches continue their individual sites is an individual decision for each Branch. ARS hopes that Blue Mountains, Mt Tamborine and other places, in Australia, where rhododendrons thrive will also have a page whether or not they become Branches.
The aim is that all Society and Branch information and publications will be accessible on the site. This includes *The Rhododendron* and *Newsletter*. Past issues are already on site and downloadable. This *Newsletter* will be published on the site instead of being emailed as in the past. Email recipients will get an email advising of publication. Hard copy recipients will continue to get hard copy. But, bearing in mind printing and publication costs, it is hoped more members will accept electronic publication.
REFURBISHMENT OF THE VIREYA HOUSE AT OLINDA

The building of a display house for Rhododendrons of the subgenus vireya has been an objective of many ARSV society members for a long time. Over the years plans had been drawn up several times but the project was always problematic. In 2012 a resolution was put to a general meeting of the ARSV to refurbish the main glasshouse at Olinda and use it to house the vireya collection. The resolution was passed and a budget of $20,000 was agreed. Collaboration between the volunteers of the ARSV (particularly Hugh Eitzke, Michael Hare, Prue Crome, Andrew Rouse and the author) and Parks Victoria staff (special mention to Glenn Maskell) has produced an excellent result that came in on budget (just).

Why a Vireya House

Members of the ARS have long been at the forefront of introducing wild vireya species into cultivation. So much so that the number of species cultivated by local members and at Olinda represent probably the largest collection of vireyas anywhere other than that held by the Edinburgh Botanic Gardens. Unfortunately ageing and declining membership of the ARS has meant that much of this collection is increasingly at risk of being lost. It is hoped that presenting much of this collection in a permanent display for the public to see would not only increase the number of plants held for each species but might also attract new interest and members to the society.

Such a display must be attractive to the public, it must be housed in a space or enclosure that enhances the Gardens and shows the vireyas at their best. The advantage of a glasshouse is that it provides a year round focal point that is out of the weather. A glasshouse allows for a concentration of plants and provides a venue where the public can be educated about the beauty, diversity and at risk conservation status of species within the subgenus.

The Structure

There was much discussion about what sort of structure was required to best suit the range of vireyas we could envisage growing. An open structure with shade-cloth for the roof and walls was favoured from the point of view of disease control, the better air circulation reduces fungal and pest outbreaks, but this offered no great ability to control the environment particularly mitigating the cold winters. Shade-cloth structures with a solid roof would give control over watering while still giving excellent airflow but no improvement in the winter. A solid walled and roofed “glasshouse” would provide warmer winter temperatures but internal airflow for disease control and high summer temperatures need to be considered. An advantage of a “glasshouse” over open structures is that plants that are not suited to the warmer environment can still be grown outside thereby providing a wider total range of growing environments.

In the end the deciding factor was that we had an existing glasshouse structure in a spot within the Garden that would be appropriate. It was a bit too small, in poor repair and suffered from bad drainage but it would be relatively cheap to fix and would provide a great learning guide for a Vireya House Project if we chose to build a bigger, better structure later. In the end it was easier to repair and reclad this structure as a “glasshouse” than to dismantle the structure and rebuild as a shade-house.
The Aim
The aim was to build a structure that would suit a broad vireya collection, it also had to be attractive enough to encourage the general public to want to go in and have a look at its contents.

The Objectives
Having made the decision to refurbish the existing house as a solid walled enclosure it then became possible to include a significant amount of environmental control. Good thermal control was needed, so this meant insulation for the winter and cooling for the summer. Good airflow demanded both forced ventilation into and circulation within the house. Shading was needed for the summer but not for the winter. Automatic humidity control and automatic watering were needed to avoid increased labour demand. Where possible the humidification, watering and air circulation would be designed to keep the leaves dry and therefore reduce the likelihood of fungal disease.

Preparation
Re-using the existing structure meant we had a galvanised iron frame mounted on a 600mm high brick stud wall. It was 15m long by 9m wide and 5m high. It had a central ridge vent that was opened by a pulley system. It had no facility for shading or additional ventilation. The house had originally been glass but this had been converted to a corflute cladding which was beyond it use by date. The drainage was poor and not helped by leaking, old plumbing and stormwater inflow.

The brickwork and galvanised frame were in good condition but the glazing bars and base plate were completely rusted. The old overhead sprinklers mostly worked, they were however inadequate for the new configuration.

The glasshouse had served as a propagation house for many years so the project began with the removal of the old propagator (see previous articles on the new propagation house). The benches were removed, the plumbing removed and the structure stripped back to the frame. The brickwork was cleaned and in parts re-pointed. The drainage was improved and new gravel was added. The frame was re-attached to the brickwork, re-braced and painted.

Refurbishment
The complete removal of the glazing bars and stripping back to the frame allowed the re-cladding of the building to be done using a twin walled polycarbonate with the appropriate aluminium joiners and mouldings. This made for a relatively easy building process and gave a very neat finish. The polycarbonate used was manufactured by Suntuf and was their 10mm Sunlite product in clear. This is a highly attractive, tough and long lasting material which because if its twin walls and central air gap has good insulating properties.

To allow shading to be used during the summer and removed during the winter a reflective shade cloth made from thin aluminium strips was installed as a curtain 300mm below the roof. This curtain can easily be pulled up for shade in the summer and retracted for the winter. This material is widely used for shading in commercial glasshouses; it gives a 50% block-out and was purchased from Monbulk Rural.
The ventilation installed consisted of two 300mm electric fans kindly given to the project by Simon and Marcia Begg. They were installed low down in the end wall to force air into the glasshouse. Internal circulation is maintained by two 400mm fans mounted just below the shade cloth (Monbulk Rural).

Humidity control and cooling is produced by a high pressure (1000psi) pump and nozzle system supplied by OZMIST Misting Systems of Wangaratta. Lines of misting nozzles on the roof trusses achieve routine relative humidity control, while rings of nozzles in front of the air intake fans produce cooling.

A control unit was made using a RH controller and a thermostat. This controls the external fans, the high pressure pump and misting nozzles. The controller turns the fans on when the glasshouse is too hot, turns the misting nozzles rings on to produce cooling or the roof nozzles on for RH control.

Preliminary Testing

Some testing of conditions achieved inside the glasshouse were attempted. The measurements were made with the glasshouse empty, i.e. no plants and a dry gravel floor as the base. This dry, plant free glasshouse would equate to the worst possible case, in that plant transpiration and evaporation would normally help keep internal temperatures down somewhat. The measurements were made on warm, cloud free days with minimal external breezes. The central ridge vent was open right through these experiments.

The glasshouse, without external fans running, no shading or misting, levelled off at temperatures about 10C about the external temperature (42C internal with 33C external and 33C internal with 23C external).

The use of the internal shades clearly reduced the radiant heat you felt inside the glasshouse but the measured air temperatures inside the glasshouse were still about 8C to 10C hotter than outside. It would appear the shades stopped some of the heat directly hitting the floor but the heat remained in the glasshouse. In this passive system the ridge vent did not appear to adequately remove heat.

Some reduction of the internal temperature was achieved by running the external fans with the shade cloth drawn but the internal temperature was still 6C above external.

When all temperature control measures were acting, fans, shades and mist nozzle rings the internal temperature was much closer to the external temperature. The amount of cooling achieved did appear to be more dependent on the external relative humidity then on the external temperature. With an external temperature of 23C and a RH of 42% the internal temperature reached 26C and 65% internally. A second measurement on a day of 33C and 20% outside gave an internal temperature of 30C and 45% RH (so cooled to below external temperature).

Where to from here

The tasks now are to landscape the interior with hard surfaces, garden beds, hanging baskets and plants. How to use the misting system, fans and shading to produce the conditions most suitable for the plants will be an ongoing experiment.

John O’Hara
R mollicomum Alan Kepert Photo
NRG September 2012

R villosulum
“Beechmont” March 2013
PROPOSAL FOR THE DISPLAY OF VIREYAS IN THE GLASSHOUSE
AT OLINDA
Andrew Rouse

Objectives:
• Provide a publicly accessible collection of vireyas species and sub-species of known provenance (and other tropical/sub-tropical Rhododendron) to showcase the diversity in the group and to ensure a high quality reference collection;
• Display vireyas in an environment best suited to provide optimal growing conditions (that also minimizes the likelihood of pests and disease) that will showcase the diversity in the group;
• Provide a display that is well presented and informative that potentially becomes a focal point for ARS-Vic activities.

Considerations:
• There are ~160 vireya species and subspecies in cultivation in Australia. ARS-VIC should aim to have in its collection at least two plants from each provenance. These do not all need to be in the glasshouse, however many of them should be. Glasshouse configuration should aim to comfortably accommodate ~320 plants;
• Space permitting, grow and display companion plants and top-quality vireya hybrids (those less suited for outdoor display). Wherever possible, companion plants should be species that grow in association with vireyas in the wild;
• Configuration of plants – location and spacing – should take into account the importance of internal air circulation. Plants should not be located such that it impedes air flow or interferes with watering, internal shade cloth, or compromise ability to control pests and diseases;
• Wherever possible, display in such a way that minimizes the likelihood of theft.

Proposed display categories:
a) Hanging baskets
Rationale: many of the small species are particularly susceptible to root disease and therefore require excellent drainage. They often have a poorly developed root system and require an ultra-low fertiliser regime, and are easily crowded out when grown with other plants. These are ideally suited to being grown in hanging baskets where they can be grown without competition from other plants in a mix that can be tailored to their requirements.
Also suitable for larger vireyas that have one of more of the following characteristics:
• susceptible to root fungal disease and therefore require excellent drainage;
• require absence or minimal fertilising;
• poor root system;
• spreading habit;
• lanky (few branches); and
• a potential target of theft.

Species: for selected vireya species that grow up to 0.5m in height. Provision should be made for displaying 20-30 species in hanging baskets. Examples include *R citrinum*, *R salicifolium*, *R ericoides*, *R pulleanum*, *R adinophyllum*, *R acrophilum*, *R saxifragoides*, *R womersleyi*, *R rousei*, *R lanceolatum*, and *R verstiegi* (all small plants), *R leucogigas* (few branches + theft target?), *R vacciniodes* (no fertiliser), *R lowii* (poor root system, no branching), *R suaveolens* (spreading habit).

Mix: base mix is 3 parts frittered polystyrene to 1 part peat moss. This can be bulked up with additional organic matter (crushed treefern pieces, pine park etc) as required.

Note: Duplicates of these plants can also be grown in the raised bed.

b) Treefern log

Rationale: preferred growth medium for the smallest species. Provides perfect drainage, minimised likelihood of media-related diseases. Mimics growing conditions of these species in the wild.

Species: for selected vireya species that grow up to 10-20cm in height, or creeping species. Examples include *R rubineiflorum*, and some of the tiny vireya hybrids such as *R rubineiflorum* x *R anagalliflorum*.

Mix: section of dead treefern log (preferably *Dicksonia antarctica*). Once the plant is established the section of treefern can be hung vertically such that the vireya trunk emerges from the side of the section of treefern.

c) Pots

Rationale: some of the larger vireya species make excellent display plants and should be afforded space to show their potential. The bushier plants will also crowd out other plants if grown in the raised beds. As well, mature plants - those 15 years and older – that have been grown in pots may not survive a planting into the garden bed, and should continue to be grown in a pot.

Species: for selected tall and bushy vireya species that reach 1 m or more, and mature potted specimens. This could include *R loranthisflorum*, *R javanicum*, *R kochii*, *R carringtoniae*, *R konori*, *R viriosum*, *R suaveolens* – potentially up to 30 vireyas in pots. In addition, other Rhododendron from ub-tropical regions such as *R excellens* (Vietnam), *R wrayi* (peninsula Malaysia), *R ludwigianum* (Thailand), *R moulainense* can be displayed in this area. The pots could be either plastic or terracotta; plastic pots within a terracotta pot works well.

Mix: mix currently used at Olinda is fine. If drainage needs to be improved, frittered polystyrene can be added. Pots should be on paving to reduce risk of soil borne disease and pests.

d) Raised garden bed

Rationale: the bulk of the species can be grown in a raised garden bed. There is a range of plant sizes that will enable larger and/or lanky plants to be grown at the back of the beds with smaller and bushier plants towards the front.
Species: provision should be made to accommodate ~100-120 species in the raised beds. Duplicates of plants grown elsewhere (hanging baskets and pots) can also be grown in the beds.

Mix: drainage needs to be excellent, however ensuring that watering satisfactorily ‘wets’ the growing medium. One option is to establish plants in sections of treefern and then plant this (semi-submerged) in the raised garden bed. This is particularly suitable for plants with a weak root system ie *R zoelleri*. Others can be planted directly into the bed. May need to trial suitable mixes.

e) Bench

Rationale: an area to display plants housed elsewhere whilst they are in flower, ARS-Vic society information &/or interpretive display. Could also house a seed propagating box.

Species: any suitable species or hybrid worthy of display.

Mix: NA

Summary of plant display categories

<table>
<thead>
<tr>
<th>Bushy</th>
<th>Pots at ground level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hanging baskets and</td>
</tr>
<tr>
<td></td>
<td>sections of tree fern</td>
</tr>
<tr>
<td></td>
<td>Raised garden beds</td>
</tr>
<tr>
<td></td>
<td>Lanky</td>
</tr>
</tbody>
</table>

Layout option, for discussion:

A draft layout is proposed, for discussion. The layout features are:

- Raised garden beds that run the length of the south and north walls of the glasshouse and extend into the glasshouse to approximately the line of the sliding doors. The beds can be made to meander to give it a less rigid layout;
- A display bench between the sliding doors (along the west wall), making use of what is otherwise dead space;
- Paved area in the middle section of the glasshouse for pots, and a separate area for pots against the east wall (adjacent to the double door opening);
- Access paths running E-W from each sliding door and connecting N-S at both ends of the glasshouse;
• Hanging baskets displayed above the area for pots and potentially above the paths, assuming there is sufficient height available.

Rationale for this option:
• Approximately apportions the available space into the ratio required to display plants in raised beds and pots;
• Largest and tallest plants – those in pots – are in the centre of the glasshouse where the roof height is highest. The potted plants can also be re-positioned as plants grow, &/or to change the micro-conditions should this be deemed necessary;
• Narrow raise beds will minimise plants ‘being lost’ in the back of a bed, whilst providing enough space for plants to be 2–4 deep, depending on size;
• Avoids plants in front of the fans in the end wall;
• Places pots in front of the double doors at the back. Pots can be removed should access be required;
• Provides easy access to plants ie supplementary hand watering, spraying should this be required etc
• Allows for hanging baskets to be displayed in the middle of the glasshouse and above paths where they are up high and out of arms reach, making the most of available space;
• Provides space for a bench without it being a prominent feature of the glasshouse;
• Visitors will have plants either side of them as they walk through the glasshouse.

Proposed layout – not to scale
VIREYA SPECIES COLUMN

R. villosulum [photo page 9]

This species was introduced into Australia from a private collection in NZ. The first recorded flowering in Australia was March this year, with three flowers on a plant held by Simon Begg.

R. villosulum is found from the Wissell Lakes region in the West Papua highlands through to the Eastern Highlands of PNG, in the altitude range of 2000-3000m. It is described as epiphytic in moss forest.

Description

R. villosulum is very similar to *R. christi*, differing from this species with its upright habit (branches held vertically), slightly longer petiole and distinctly curved and non-cordate leaves. It shares with *R. christi* the very long internode with leaves in a tight pseudowhorl with 1-2 much smaller leaves, and curved corolla that is oblique at the lobes.

I had the opportunity to examine Simon’s plant in flower. It largely met the description in Argent (2006) though with a shorter petiole – and in this regard much closer to the sub-sessile petiole of *R. christi* – and more importantly having bi-coloured flowers (yellow tube and orange lobes) like *R. christi* rather than uniform red as per the description. The RBGE database does describe a form of *R. villosulum* in their living collection that has bi-coloured flowers, so perhaps the plants in Australia are this form of the species. This form is described as having dark purple anthers. I didn’t check for this when examining Simon’s plant, so this distinctive characteristic should be checked next time it comes into flower.

Verdict

R. villosulum is a relatively recent introduction into cultivation in Australia, so arguably too early to make a definitive verdict. On the strength of seeing one plant at its first flowering, *R. villosulum* offers little horticulturally not already provided by *R. christi*. My plants, grown from cuttings, are now close to 1 m tall and are yet to flower.

I’m not aware that this species have ever been used in hybridising.

Andrew Rouse

NATIONAL PRESIDENT’S REPORT

I recently listened to a podcast which came via the Rhododendron Species Foundation, Seattle Washington USA.

It was of Steve Hootman, RSF Director, being interviewed by a gardening Radio Talkback host in Portland Oregon. The topic was of course Rhododendrons and was a wide reaching Q&A session.

I will send out the link via email to as many Rhododphiles as I have on my address list. It is here in print, also, if you know how to put it into the task bar on the internet.

I hope it inspires you to come and hear him in Adelaide on the weekend of October 19 and 20. Steve will be our guest speaker on the Saturday evening which will be a combination of the Convention Dinner and the Alan Kerr Grant memorial lecture.

I am writing this in early April and will be leaving to attend the Rhododendron Species Conservation Group Conference in Edinburgh later this month. This will be a response to the Red List put out in 2010 and will have representatives from all the Rhododendron species growing interest groups of the world.

On my return I will send out a précis and in October I will be able to give more comprehensive report at our annual convention.

For all delegates of National Council there will be teleconference in early May. If you have any concerns you wish raised please let your delegate know.

All the best with your Rhodos.

Rob Hatcher

TESSELAARS RARE PLANT EXPO

The ARS Vic Branch ran a highly successful plant stall at Tesselaars Rare Plant Expo over the weekend of 6th and 7th April. The weather was absolutely wonderful, enticing everyone out and about to capture that special plant for their gardens. Our stall overflowed the one marquee and fortunately Paul Tesselaar allowed us to use an adjacent lawn for more space. Saturday was particularly busy with loads of enquiries on cultivation and pest control and our members did a fantastic job of information dissemination and promotion. There seemed to be renewed interest in Rhododendrons of all types….let's hope this is the case as they are such beautiful plants both for their flowering and also leaf colour and texture. We managed to clear some of the unlabelled plants from the shade houses and with the low prices, gave people the opportunity for a lucky dip. We will now have more space for potting on all the newly propagated stock. Andrew Raper from Rhoglen also supplied beautiful luscious plants which made our stall look very inviting. We needed a second load of plants for Sunday, having sold out on Saturday and Andrew came good with two large flowering vireyas which were sold very promptly. The photo gives a better idea of why our stand drew the crowds!

Prue Crome

ARSV Tesselaars Stand
This photo is taken on Sunday morning after stock was replenished. Saturday’s photos shows an empty stand with stock sold.

Francis Crome at left behind R Dixie
CONTENTS

Programme
President’s Report
The Species Column
Society Website
Vireya House at Olinda
Photographs
Vireya House Planting Guide
Vireya Species Column
From the National President
Tesselaars Rare Plant Expo
Contents, Office Bearers and Committee Members

OFFICE BEARERS AND COMMITTEE MEMBERS 2012-2013

PRESIDENT John O’Hara 9523 7017 johnohara@optusnet.com.au
VICE-PRESIDENT Graham Price 9639 4493 lithic01@bigpond.net.au
TREASURER Prue Crome 9489 8094 prue.crome@fcpl.net.au
SECRETARY Mick Hare 9844 2232 burrow@netspace.net.au

COMMITTEE Simon Begg 9728 4466 simonbegg@gmail.com
Francis Crome 9489 8094 francis.crome@fcpl.net.au
Val Marshall 98034434 valerie_marshall@bigpond.com
Elizabeth Xipell 9859 9934 lizax@melbpc.org.au
Alex Pottage 5786 1595 POBox 92 Kinglake 3763
Dan Macleod 0400 594319 dan.macleod@parks.vic.gov.au

NEWSLETTER EDITOR

Simon Begg 9728 4466 simonbegg@gmail.com

NATIONAL COUNCIL DELEGATES

Simon Begg 9728 4466 simonbegg@gmail.com
Prue Crome 9489 8094 prue.crome@fcpl.net.au